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Abstract Defects in human leukocyte antigen class I anti-
gen processing machinery (APM) component expression
can have a negative impact on the clinical course of tumors
and the response to T cell-based immunotherapy. Since
brain metastases of breast cancer are of increasing clinical
signiWcance, the APM component expression levels and
CD8+ T cell inWltration patterns were analyzed in primary
breast and metastatic brain lesions of breast cancer by
immunohistochemistry. Comparison of unpaired 50 pri-
mary and 33 brain metastases showed lower expression of
�2-microglobulin, transporter associated with antigen pro-
cessing (TAP) 1, TAP2 and calnexin in the brain lesions.

Although no signiWcant diVerences were found in APM
component scores between primary breast and brain lesions
in 15 paired cases, primary breast lesions of which patients
eventually developed brain metastases showed lower levels
of �2-microglobulin, TAP1 and calnexin compared with
breast lesions without known brain metastases. The extent
of CD8+ T cell inWltration was signiWcantly higher in the
lesions without metastasis compared with the ones with
brain metastases, and was positively associated with the
expression of TAP1 and calnexin. Furthermore, mouse
tumor cells stably transfected with silencing hairpin
(sh)RNA for TAP1 demonstrated a decreased susceptibility
to cytotoxic T lymphocytes in vitro and enhanced spontane-
ous brain metastasis in vivo. These data support the
functional signiWcance of TAP1 expression in tumor cells.
Taken together, our data suggest that patients with low or
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defective TAP1 or calnexin in primary breast cancers may
be at higher risks for developing brain metastasis due to the
defects in T cell-based immunosurveillance.

Keywords Breast cancer · Brain metastasis · Antigen 
processing machinery (APM) components · CD8+ T cell · 
Transporter associated with antigen processing (TAP)1

Introduction

Cerebral metastases are a common complication among
patients with systemic cancer. The tumor types most likely
to metastasize to the brain are lung, breast and melanoma
[1] with 20–30% of brain metastases originating from
breast cancer [2]. Among women with breast cancer,
30–40% will develop metastatic disease. Historically, 15–20%
of patients with metastatic breast cancer present with clini-
cally symptomatic metastases to the brain. At autopsy,
asymptomatic metastatic lesions are found in the brains of
more than 30% of breast cancer patients [1, 3–5]. Although
risk factors for brain metastasis have been increasingly
characterized, such as basal type histology and HER2/neu
expression [6], it is necessary to gain better understanding
in factors promoting brain metastasis of breast cancer. As
therapies for systemic cancer improve and patients survive
longer, the risk of cerebral metastasis will increase.
Recently, stereotactic radiosurgery has emerged as a possi-
ble alternative to whole-brain radiotherapy and surgery [7].
Nevertheless, median overall survival for cerebral metasta-
ses from breast cancer remains less than 1 year [8]. Cere-
bral metastases of cancers, therefore, are major obstacles
that must be overcome before cancers can be cured by any
means.

Immunotherapy has a great potential for prevention and
treatment of brain cancers. Our group is dedicated to the
development of vaccine strategies for primary brain tumors,
such as malignant gliomas [9, 10]. Yet, these vaccine strat-
egies rely on activated cytotoxic T lymphocytes (CTL) that
recognize tumor antigens (TA) presented as a part of the
human leukocyte antigen (HLA) class I-TA peptide com-
plex. Antigen processing and presenting machinery compo-
nents (APMs) play a crucial role in the generation of these
complexes. However, defective expression of APMs is a
common phenomenon observed in a variety of human
tumors [11]. Immunotherapy based on the activation of
tumor-speciWc T cells can be severely limited by the tumor
variants lacking APMs. In fact, the frequency of these
defects is associated with clinical outcome, such as tumor
progression and metastasis, as well as poor patient survival
[12–15]. To the best of our knowledge, however, no infor-
mation is available about the frequency of APM defects in
brain metastases of breast cancer.

In this study, we evaluated the expression of HLA class I
APM expression between primary breast cancer and brain
metastasis, including 15 cases in which paired primary
breast and brain metastatic lesions were available. Our data
demonstrate that �2-microglobulin, transporter associated
with antigen processing (TAP) 1, TAP2 and calnexin are
downregulated in brain lesions compared with unpaired
breast lesions. Furthermore, primary breast lesions with
known history of brain metastases showed lower levels of
�2-microglobulin, TAP1 and calnexin compared with
breast lesions without known brain metastasis. The extent
of CD8+ T cell inWltration in the breast lesions was posi-
tively associated with expression of TAP1 and calnexin.
Moreover, murine tumor cells in which TAP1 was geneti-
cally knocked down demonstrated a decreased sensitivity to
CTL-mediated lysis and an increased frequency of sponta-
neous brain metastasis in vivo, indicating the functional
signiWcance of TAP1 expression for immune surveillance.
Taken together, these data suggest a potential role of
immune surveillance in primary breast lesions for reducing
risks for brain metastasis.

Materials and methods

Cell line and animals

The murine B16 melanoma (H-2b) and 4T1 mammary ade-
nocarcinoma (H-2d) cell lines were cultured in RPMI-1640
(Mediatech Inc, Manassas, VA) supplemented with 10%
FBS (Mediatech Inc, Manassas, VA) and 1% penicillin/
streptomycin (Invitrogen Corp, Carlsbad, CA). Pmel-1
mice (The Jackson Laboratory) are C57BL/6-background
(H-2b) mice transgenic for human (h)gp10025–33-speciWc T
cell receptor (TCR), which cross-reacts with mouse
(m) gp10025–33 [16]. H-2d Balb/c mice were obtained from
the Jackson Laboratory (Bar Harbor, ME). Animals were
handled in the Animal Facility at the University of Pitts-
burgh per an Institutional Care and Use Committee-
approved protocol.

Tissue samples and protection of human subjects

Archived paraYn-embedded tissue sections of primary
breast and brain metastasis lesions were provided with
histopathological diagnosis by tissue banks from Magee-
Women’s Hospital and the Division of Neuropathology at the
University of Pittsburgh School of Medicine, respectively.
Among 65 cases of primary breast cancer and 48 cases of
brain metastasis used in this study, 15 cases had paired pri-
mary and metastatic lesions from the same patient. The other
50 cases of primary breast cancer were followed up for
20 months by median, ranging 10–64 months, after diagnosis
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and did not have known brain metastases until the day of
analysis. These cases are referred to as cases without known
metastasis in this manuscript to distinguish them from the
other 15 cases with paired brain metastases. De-identiWed
patient information was accessible only through designated
honest brokers (Anatomic Pathology Broker System,
Approval # IRB 08080284 [PI: Hideho Okada]).

Antibodies and peptides

The mAb HC-10, which recognizes a determinant
expressed on �2m-free HLA-A3, HLA-A10, HLA-A28,
HLA-A29, HLA-A30, HLA-A31, HLA-A32 and HLA-
A33 heavy chains and on all �2m-free HLA-B and HLA-C
heavy chains [17, 18]; the mAb HC-A2 which recognizes a
determinant expressed on �2m-free HLA-A (excluding
HLA-A24), HLA-B7301 and HLA-G heavy chains [17, 19];
the �2m-speciWc mAb NAMB-1 [20]; the 20S protea-
some inducible subunit low molecular weight polypeptide
LMP2-speciWc mAb SY-1 [21]; the TAP1-speciWc mAb
NOB1 [22], the TAP2-speciWc mAb NOB2 [22], the caln-
exin-speciWc mAb TO-5 [23]; and the tapasin-speciWc mAb
TO-3 [23] were developed and characterized as described.
All of the above-mentioned mAbs are IgG1 except mAb
HC-10 which is an IgG2a. mAb were puriWed from ascetic
Xuid by sequential precipitation with ammonium sulfate
and caprylic acid. The purity of the mAb preparations
was monitored by SDS-PAGE; the activity was moni-
tored by Western blotting. The antihuman CD8-speciWc
mAb clone C8/144B and HRP-conjugated secondary
antibody (EnVision + system) were purchased from
Dako Cytomation (Glostrup, Denmark). hgp10025–33 pep-
tide (KVPRNQDWL) was synthesized in the University of
Pittsburgh Peptide Synthesis Facility with >95% purity as
indicated by analytical high-performance liquid chromatog-
raphy and mass spectrometric analysis.

Immunohistochemistry

DeparaYnized tissue sections were placed in citrate buVer
pH 6.0 and heated in a pressure pot for 20 min. Following
overnight incubation with an optimal dilution of primary
antibody at 4°C, slides were incubated with an optimal
amount of HRP-conjugated secondary antibody for 45 min
at room temperature. Diaminobenzidine (DAB, DAKO)
was used as chromogen, and sections were counterstained
with hematoxylin. Staining intensity of APM components
was graded as weak: 1, intermediate: 2, or strong: 3. The
stained area was classiWed as follows: no staining, 0; ·10%
of all cells stained as viewed by microscopy, 1; 11–50%, 2;
51–75%, 3; >75%, 4. An average immunoreactive score
was calculated by multiplying the staining intensity by the
area of staining. A total score of 3 or more was deWned as

positive expression and a score of less than three as nega-
tive. 0–2, (negative, score 0); 3–4, (weakly positive, score
1); 6–8, (moderately positive, score 2); 9–12, (strongly pos-
itive, score 3). Intratumoral inWltrated CD8 positive cells
were counted in 10 high power Welds. Two investigators
who blinded to the clinical information analyzed tissue sec-
tions independently and the scores of two investigators
were averaged.

RNA interference

The mouse B16 melanoma and 4T1 mammary adenocarci-
noma cells were transfected at 30–40% conXuence with
TAP1-targeting shRNA or non-targeting shRNA control
(OriGene Inc, Rockville, MD) using Lipofectamine 2000
(Invitrogen Corp) according to the instruction by the manu-
facturer, followed by 10 �g/ml puromycin selection. The
targeting sequence for TAP1 was 5�-TCGTCCAGATGCC
TTCGCTATCAGTTATG-3�. The cells from single clones
were harvested 14 days later to evaluate the knockdown
eVect on TAP1 by quantitative real-time PCR. GAPDH was
used as the internal control. The primers were obtained
from Applied Biosystems: TAP1 (Mm00443188_m1), and
GAPDH (Mm99999915_g1).

Generation of hgp100-speciWc eVector cells

Pmel-1 mouse-derived splenocytes (SPC) were stimulated
with hgp10025–33 peptide (5 �g/ml) in the presence of
100 U/ml rhIL-2 (PeproTech) [24]. Cells were restimulated
under the same conditions at 48 h after the initial stimula-
tion and were harvested on day 7.

CTL assay

B16 cells transfected with TAP1-targeting shRNA (B16-
TAP1KO) and ones transfected with non-targeting shRNA
control (B16-mock) were Wrst labeled with 51Cr for 1 h.
After washes, cells were plated onto 96-well tissue culture
plates in triplicates (2 £ 103 per well) and incubated with
eVector cells at 100:1 E/T ratio in 0.2 ml/well complete
medium. After incubation for 18 h, the plate was centri-
fuged at low speed. 25�L supernatant was carefully aspi-
rated and loaded onto a lumaplate. The radioactivity was
measured by using a gamma counter.

Spontaneous brain metastasis assay

Balb/c mice received inoculations of 4T1 tumor cells trans-
fected with TAP1-targeting shRNA (4T1-TAP1KO) or
ones transfected with non-targeting shRNA control (4T1-
mock) (1 £ 106 cells/mouse for both groups) in the abdom-
inal mammary gland. On day 30 after the inoculation, mice
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were killed and perfused with 20 ml PBS. Their brains were
removed and Wnely minced with 18G and 27G needles.
After extensive washing with PBS, single cell suspensions
from each mouse were plated in a 10-cm tissue culture dish.
The cells were cultured in the presence of 2 �g/ml puromy-
cin during the Wnal 7–10 days of the total 28 day culture
period to selectively grow tumor cells. The cultured dishes
were then Wxed with methanol and stained with crystal vio-
let for counting the foci of tumor cells that gave rise from
each animal.

Statistical analysis

Statistical analyses were performed using StatMate III and
Graphpad Prism 5 softwares. Mann–Whitney U test and
t test were used in comparison of two groups. One-way
ANOVA was used to analyze data from more than two
groups. Kendall’s tau-b test was used to analyze CD8+ T
cell inWltration. Pearson’s correlation was used to analyze
the association of APM expression. P < 0.05 was consid-
ered to be signiWcant.

Fig. 1 Expression of �2 microglobulin, TAP1, TAP2 and calnexin in
primary and brain metastasis of breast cancer. a Representative immu-
nohistochemical (IHC) staining on primary breast cancer tissues (left)
and metastatic brain lesions (right) against �2 microglobulin (�2m),
transporter associated with antigen processing (TAP)1, TAP2 and
calnexin. Numbers in each of the panels indicate the score of staining

intensity as deWned in the materials and methods section. b Summary
of the results, comparing the expression level of each of the APM com-
ponents in primary breast cancer cases without known brain metastases
(Primary, N = 50) and unpaired metastatic brain lesions (Metastatic,
N = 33). Thick bars indicate mean scores, and error bars represent
§SD. *P < 0.05, **P < 0.01
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Results

Expression of HLA class I APM components in primary 
breast cancer and brain metastatic lesions

To determine whether HLA class I APM components are
diVerentially expressed in brain metastatic lesions com-
pared with primary breast cancers, 65 cases of primary
breast cancer and 48 cases of brain metastasis were evalu-
ated by immunohistochemistry for expression of HLA class
I heavy chain, �2-microglobulin, tapasin, TAP1, TAP2,
LMP2 and calnexin. Among them, 15 cases had paired pri-
mary and metastatic lesions from the same patient. The
other 50 cases with primary lesions did not have known
brain metastases. As shown as representative cases in
Figs. 1 and S1A, tumor cells demonstrated variable expres-
sion levels of these molecules. When expression levels
were compared between unpaired primary breast and meta-
static brain lesions (Table 1 as well as Figs. 1, 2a), the brain
lesions demonstrated signiWcantly lower expression levels
of �2-microglobulin (P = 0.023), TAP1 (P < 0.001), TAP2
(P = 0.002) and calnexin (P = 0.016). The other markers,
HLA class I heavy chain, tapasin and TAP2, did not dem-
onstrate signiWcantly diVerent expression levels between
the two groups (Fig. S1).

On the other hand, when 15 paired cases were analyzed,
none of the evaluated markers demonstrated signiWcant
diVerences between the primary versus metastatic brain
lesions (data not shown). However, when the APM expres-
sion levels in the primary breast lesions were compared
between the cases with or without known brain metastases
(Fig. 2b), the cases with known brain metastases demon-
strated lower levels of �2-microglobulin (P < 0.001), TAP1
(P < 0.001) and calnexin (P = 0.03) compared with the
cases without known brain metastases.

Analyses of all the samples from primary and brain
lesions revealed that the expression level of HLA class I

heavy chain positively correlated with expression levels of
�2-microglobulin (P < 0.0001), tapasin (P < 0.0001), TAP1
(P < 0.0001), TAP2 (P = 0.0005) and LMP2 (P = 0.0189)
(Fig. 3).

SigniWcance of tumor inWltrating CD8+ T cells 
in the primary breast cancer

As APM components are critical for intact antigen-presen-
tation to CD8+ T cells [25], it was hypothesized that the
degree of APM expression would correlate with that of
CD8+ T cell inWltration in these tumors. In most cases (63
out of 65 cases; 96.92%), primary breast lesions were vari-
ably inWltrated by CD8+ T cells (Fig. 4a). The extent of
CD8+ T cell inWltration in the primary site was positively
associated with expression levels of TAP1 (P = 0.004) and
calnexin (P = 0.004) (Figs. 4b, S2). Furthermore, the cases
that are known to have developed brain metastases demon-
strated signiWcantly lower degrees of T cell inWltration
compared with the cases without known brain metastases
(P < 0.001) (Fig. 4c; Table 2).

SigniWcance of TAP1 expression in tumor cells for CTL-
mediated lysis and spontaneous brain metastasis in mice

To determine the functional signiWcance of TAP1 expres-
sion in tumor cells for CTL-mediated lysis, we used B16
melanoma cells and syngeneic pmel-1-derived gp100-spe-
ciWc CTLs because B16 cells express the murine gp100
[26]. As shown in Fig. 5a, shRNA-mediated knockdown
achieved approximately 90% reduction of TAP1 mRNA
levels. B16-TAP1KO demonstrated decreased levels of
CTL-mediated lysis compared with B16-mock (P = 0.0282)
(Fig. 5b).

To determine the role of TAP1 expression in breast can-
cer cells for spontaneous brain metastasis, we knocked
down TAP1 expression in murine 4T1 breast cancer cells

Table 1 Comparison of APM expression between primary breast cancers and brain metastatic lesions

Data indicate mean scores § SD

* Mann–Whitney U test; ** Paired t test. Bold: Statistically signiWcant (P < 0.05)

Unpaired samples* Paired samples**

Primary (n = 50) Met (n = 33) P value Primary (n = 15) Met (n = 15) P value

HLA 0.81 § 0.89 0.80 § 0.93 0.89 0.73 § 1.02 0.5 § 0.82 0.3

�2m 0.99 § 0.90 0.55 § 0.65 0.023 0.23 § 0.56 0.3 § 0.46 0.72

Tapasin 0.91 § 0.97 0.66 § 0.81 0.36 0.47 § 0.61 0.33 § 0.79 0.6

TAP1 1.55 § 0.90 0.80 § 0.90 <0.001 0.43 § 0.70 0.30 § 0.59 0.53

TAP2 0.72 § 0.669 0.29 § 0.48 0.002 1.20 § 0.88 0.97 § 0.83 0.44

LMP2 1.41 § 0.73 1.32 § 0.80 0.49 1.34 § 0.74 1.73 § 0.80 0.22

Calnexin 1.99 § 0.76 1.47 § 1.04 0.016 1.33 § 1.10 1.47 § 1.19 0.64
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(4T1-TAP1KO) (Fig. 5c). Syngeneic Balb/c mice received
an inoculation of 4T1-TAP1KO or control 4T1-mock cells
into the mammary pad. On day 30, mice were killed and
clonogenic assays were performed as detailed in materials
and methods. In the group of 5 mice that received 4T1-
TAP1KO cells, 4 mice gave rise to positive growth of
tumor cells in the clonogenic assay (11, 9, 7 and 3 tumor
cell colonies per mouse) with the mean number of tumor
cell colonies as 6.00 § 2.00 (Mean § SD) per mouse. On
the other hand, only 2 of 5 4T1-mock bearing mice showed
tumor cell growth (2 and 3 tumor cell colonies per mouse)
with the mean clone number as 1.00 § 0.63 (Mean § SD)
per mouse (P = 0.0045) (Fig. 5d). There was not a signiW-
cant diVerence in in vitro growth rates of 4T1-TAP1KO
and 4T1-mock cells, and negative control mice without
inoculation of tumor cells did not give rise to any growth of
puromycin-resistant cells (data not shown), supporting that
the increased number of cell colonies is due to the enhanced
metastatic activity of 4T1-TAP1KO cells.

Association of APM components with clinicopathological 
factors

Clinicopathological factors were evaluated for their associ-
ation with the expression levels of APM components in

both primary breast cancers (Table 3) and brain metastases
(Table 4). In both primary and brain lesions, patients
younger than 60 years old demonstrated signiWcantly lower
TAP1 expression levels compared with older (¸60 years
old) patients (P = 0.043; brain mets: P = 0.004). In primary
breast cancers, patients younger than 60 years old demon-
strated lower expression levels of HLA class I heavy chain
than older (¸60 years old) patients (P = 0.036). Patients
with more advanced AJCC stage (2B or higher) demon-
strated lower expression levels of TAP1 (P = 0.006) and
TAP2 (P = 0.004) than patients with lower AJCC stage.
When APM expression was evaluated in relation to nuclear
grade, which is a prognostic factor of breast cancers [27],
primary lesions with nuclear grade III demonstrated lower
expression of TAP2 compared with ones with grade I or II
(P = 0.029). Furthermore, in primary lesions, cases with
positive ER (P = 0.022) or PR (P = 0.016) status demon-
strated lower expression levels of TAP2.

None of these clinicopathological factors were associ-
ated with levels of CD8+ T cell inWltration in primary breast
cancers (Table 3).

Discussion

The current study describes, for the Wrst time, expression
levels of APM components in primary versus brain metas-
tasis of breast cancer. Our results suggest that low or defec-
tive expression of APM components �2-microglobulin,
TAP1 and calnexin as well as paucity of CD8+ T cell inWl-
tration in the primary breast cancers may dictate high risks
of developing brain metastasis. Our results from in vitro
and in vivo functional studies support the role of TAP1 in
CTL-mediated lysis and reduction of brain metastasis.

Our results showed that defective or low expression of
HLA class I APM components occurred frequently in both
primary breast cancer and brain metastasis. There have
been only few reports on the APM status and cancer metas-
tasis [28, 29], and to our knowledge, our report is the Wrst
speciWcally evaluating the APM status in brain metastases.
Although no signiWcant diVerences were found in the
expression levels of APM components between primary
breast and metastatic brain lesions in 15 paired cases, these
primary breast lesions with known history of brain metasta-
sis showed lower levels of �2-microglobulin, TAP1 and
calnexin compared with breast lesions without known brain
metastases. These results suggest that metastases do not
originate from a subclone of tumor cells that undergo
downregulation of APM expression in the primary site
(“acquired” phenotype for tumor immune escape), but
rather that an entire primary tumor with lower or defective
expression of �2-microglobulin, TAP1 and calnexin might
be more likely to spread to the brain (“inherent” phenotype

Fig. 2 Comparison of antigen-processing machinery (APM) compo-
nents in primary and brain metastasis of breast cancer. Average scores
of APM component expression are shown for: a unpaired samples of
primary breast cancers with no known brain metastasis (N = 50) and
brain metastases (N = 33); and b primary breast cancers with (N = 15)
and without (N = 50) known brain metastasis. *P < 0.05, **P < 0.01
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for immune escape). Prospective studies in patients with
breast cancer are needed to prove this hypothesis.

The three molecules (�2-microglobulin, TAP1 and caln-
exin) which are downregulated in the cases with known
metastases have critical functions in the complex cascade
where peptides are processed and loaded on HLA class I
molecules [30, 31]. The processing and presentation of
HLA class I antigen-derived peptides is accomplished
through a series of intracellular events involving multiple
APMs [32]. Following proteosome-mediated degradation
and cytosolic cleavage of antigen proteins, peptides are
transported via TAP1 and TAP2 into the endoplasmic
reticulum (ER). In the ER, the HLA class I heavy chain and
�2-microglobulin assembly occurs, which is coordinated by
the chaperones calnexin, calreticulin, and the thiol oxidore-

ductase ERp57. Upon peptide loading, the trimer consisting
of the HLA class I heavy chain, �2-microglobulin and anti-
gen-peptide is released and transported via Golgi to the cell
surface and there exposed to the CD8+ CTL. Downregula-
tion of TAP1 inhibits the transportation of peptide to the
ER, whereas downregulation of calnexin impedes proper
folding of HLA class I heavy chain-�2-microglobulin com-
plex. �2-microglobulin and TAP1 were also often found to
be downregulated among APM components in a variety of
tumors [32, 33]. Based on these known mechanisms under-
lying the assembly of HLA class I complexes, our results
demonstrating a positive correlation of HLA class I heavy
chain expression level with �2-microglobulin and TAP1
are reasonable, although we recognize that the immunohis-
tochemical analysis in this study does not completely

Fig. 3 Correlation of HLA class 
I heavy chain with other APM 
component expression levels. 
All the stained samples derived 
from both primary and 
metastatic brain lesions were 
evaluated by Pearson’s 
correlation analysis
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distinguish intracellular versus surface expression of HLA
class I. Although our data with mouse models demonstrate
the functional signiWcance of TAP1 in CTL recognition and
metastasis, further mechanistic studies are warranted to bet-
ter understand the molecular mechanisms responsible for
APM/HLA downregulation in cancer cells.

CTLs play an active role in the recognition and destruc-
tion of tumor cells. Their activation is initiated by the inter-
action with HLA class I molecules that present cognate
antigen peptides. The lack or decreased expression of single

or multiple components of the HLA class I antigen process-
ing pathway can allow tumor cells to escape from recogni-
tion by CD8+ CTLs. Indeed, downregulation of APM
components, such as TAP1, TAP2 and tapasin, has been
found to be associated with failure of CTL recognition in
squamous cell carcinoma of the head and neck [34]. In
accordance with these previous studies, in the current
study, the extent of CD8+ T cell inWltration in primary
breast cancer was positively associated with expression
of TAP1 and calnexin. SigniWcance of our results in the

Fig. 4 Extent of CD8+ T cell inWltration in primary breast cancer is
positively associated with expression levels of TAP1 and Calnexin.
a Representative pictures of cases with low (left), intermediate (cen-
ter), and high (right) CD8+ T cell inWltration levels in primary breast
cancer tissues. b Associations between the extent of CD8+ T cell inWl-

tration and expression levels of TAP1 or Calnexin. c Comparison of
CD8+ T cell inWltration in primary breast cancer cases without known
brain metastases (N = 50) and cases that are known to have experi-
enced brain metastases in the subsequent course (N = 15)
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clinical samples was further potentiated by the suppressed
CTL-mediated lysis of B16-TAP1KO cells. This Wnding is
not unique to a speciWc cell line, because similar results
have also been described in both mouse and human tumor
cells [34–36]. These data imply that future immunotherapy
studies ought to consider TAP1 expression levels in tumors
as a biomarker and/or develop strategies to enhance TAP1
expression, such as gene transfer.

Presence and extent of T cell inWltration were associated
with longer survival of cancer patients [37–39]. Our results
show that primary breast lesions with known brain metasta-
ses were inWltrated by lower numbers of CD8+ T cells com-
pared with breast lesions without known metastases. These
results suggest that low or absent CD8+ T cell inWltration in
the primary breast cancer could also be a biomarker for
breast cancers that have a higher risk of brain metastasis.

Table 2 APM expression and CD8+ T cell inWltration in primary
breast cancers with or without brain metastases

Data indicate mean scores § SD

* Mann–Whitney U test. Bold: Statistically signiWcant (P < 0.05)

9 HPF high power Weld

Without brain 
mets (N = 50)

With brain 
mets (N = 15)

P value*

HLA 0.81 § 0.89 0.73 § 1.02 0.61

�2m 0.99 § 0.90 0.23 § 0.56 <0.001

Tapasin 0.91 § 0.97 0.47 § 0.61 0.13

TAP1 1.55 § 0.90 0.43 § 0.70 <0.001

TAP2 0.72 § 0.69 1.20 § 0.88 0.061

LMP2 1.41 § 0.73 1.37 § 0.74 0.87

Calnexin 1.99 § 0.76 1.33 § 1.10 0.03

CD8+ T cells/10HPF9 130.04 § 139.15 38.80 § 50.54 <0.001

Fig. 5 SigniWcance of TAP1 expression in tumor cells for CTL-med-
iated lysis and brain metastasis. Knockdown of TAP1 in a B16 and
c 4T1 cells. B16 and 4T1 cells were stably transfected with TAP1-tar-
geting shRNA (B16-TAP1KO and 4T1-TAP1KO, respectively) or
non-targeting shRNA control (B16-mock and 4T1-mock, respec-
tively). The eVect of TAP1 knockdown was evaluated by real-time
PCR. Boxes, mean value; bars, SD. b CTL assay. 51Cr-labeled B16-
TAP1KO or B16-mock cells were cocultured with hgp100-speciWc

CTLs for 18 h. The ratio of the eVector cells to the target cells was
100:1. Boxes, mean speciWc lyses; bars, SD. d Clonogenic assay for
spontaneous brain metastasis. On day 30 following the inoculation of
4T1-TAP1KO or 4T1-mock cells in the mammary pad, mice were
killed and single cell suspensions from the brain were cultured for
28 days. Numbers of tumor clones were counted after crystal violet
staining. Horizontal bars indicate mean values, and vertical bars indi-
cate SD. N = 5/group
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We also found a trend that patients with more advanced
stages had fewer CD8+ T cell inWltration compared to lower
stages in their primary breast cancer site, although the trend
did not meet the criteria for statistical signiWcance. The lim-
ited amounts of available tissues did not allow us to evalu-
ate the status of CD8+ T cell inWltration in the brain
metastases. However, recent reports have demonstrated that
the extent of CD8+ T cell inWltration in glioblastoma multi-
forme tissues correlates with long-term survival of patients
[40, 41]. Future studies will address whether the degree of
CD8+ T cell inWltration in metastatic cancers in the brain
provide us with any additional prognostic information.

Dendritic cells (DCs) and other antigen presenting cells
are important initiator and modulator of antitumor immune
responses. Unfortunately, we were unable to evaluate the
status of DC inWltration in primary and metastatic breast
cancer tissues due to the limited amounts of available tumor
materials. Nonetheless, the literature suggests that meta-
static tumor cells in patients’ lymph nodes may aVect the
maturation of DCs, thereby aVecting the antigen-presenta-
tion process. Although the number of DC inWltration in
breast cancer did not correlate with lymph node metastasis,

pathologic stage, or relapse-free survival [42], sentinel
lymph nodes with metastatic tumor cells contained fewer
mature DCs in than those without metastasis [43]. In addi-
tion to DCs, there is a variety of immune response media-
tors that can signiWcantly impact the immune surveillance
against cancer metastasis, such as chemokines, cytokines
and T cell eVector molecules [44–46]. Additional studies
are warranted to gain more comprehensive understanding
on the immunological factors that aVect the risk and devel-
opment of cancer metastasis.

In our analyses of clinicopathologic factors and their rela-
tion to APM expression levels, lower expression of TAP1
was signiWcantly associated with early onset of the cancers
in both primary and metastatic lesions. It is well known that
breast cancers in young patients tend to behave more aggres-
sively and possess poorer prognosis compared with cases in
old patients [47, 48]. Furthermore, in our study, lower TAP1
or TAP2 in primary breast cancers were both associated with
poorer AJCC stage. Thus, based on our results that TAP1 is
downregulated in primary breast cancers with known brain
metastases and that its expression level is positively associ-
ated with intratumoral CD8+ T cell inWltration, TAP1 may

Table 3 Clinocopathological factors and scoring of immunohistochemistry (primary lesions)

Data indicate mean scores § SD

Both paired and newly diagnosed primary breast cancer samples were included

AJCC staging system was developed by the American Joint Committee on Cancer (AJCC) that uses TNM to describe the extent of cancer in a
patient’s body. T describes the size of the tumor and whether it has invaded nearby tissue. N describes whether cancer has spread to nearby lymph
nodes, and M describes whether cancer has metastasized (spread to distant parts of the body). Patients in 2B or higher stages are those bearing
tumors that are larger than 5 cm in diameter or already have lymph node or distant metastases

9 One-way ANOVA, others: Mann–Whitney U test. * P value < 0.05; ** P value < 0.01

HLA �2m Tapasin TAP1 TAP2 LMP2 Calnexin CD8+ T cells/10HPF

Age

<60 (N = 30) 0.63 § 0.97* 0.67 § 0.90 0.68 § 0.92 1.07 § 1.10* 0.90 § 0.88 1.33 § 0.82 1.73 § 1.00 121.9 § 176.37

¸60 (N = 35) 0.93 § 0.84 0.94 § 0.87 0.91 § 0.90 1.49 § 0.83 0.77 § 0.65 1.46 § 0.63 1.93 § 0.78 105.1 § 76.75

Best AJCC stage

1, 2A (N = 46) 0.86 § 0.89 0.92 § 0.92 0.94 § 0.97 1.51 § 0.95** 0.97 § 0.75** 1.51 § 0.65 1.79 § 0.83 119.24 § 147.34

2B+ (N = 18) 0.61 § 0.99 0.58 § 0.79 0.47 § 0.70 0.78 § 0.86 0.42 § 0.60 1.14 § 0.85 1.89 § 1.01 97.06 § 85.01

Nuclear grade9
I (N = 27) 0.80 § 0.69 0.96 § 0.87 0.86 § 0.91 1.50 § 0.96 0.98 § 0.81* 1.57 § 0.68 2.05 § 1.77 143.16 § 171.9

II (N = 30) 0.89 § 1.05 0.79 § 0.93 0.90 § 0.97 1.27 § 0.97 0.90 § 0.71 1.32 § 0.68 1.58 § 0.87 78.19 § 76.8

III (N = 8) 0.83 § 1.28 0.83 § 1.12 0.72 § 1.03 0.94 § 1.07 0.50 § 1.00 1.33 § 1.09 2.11 § 1.08 101.17 § 114.32

ER status

Negative (N = 16) 0.91 § 0.99 1.00 § 1.05 1.09 § 1.10 1.47 § 1.07 1.19 § 0.73* 1.56 § 0.81 1.72 § 1.13 122.09 § 148.16

Positive (N = 49) 0.76 § 0.89 0.76 § 0.84 0.76 § 0.88 1.24 § 0.95 0.71 § 0.74 1.35 § 0.69 1.88 § 0.80 109.87 § 127.12

PR status

Negative (N = 20) 0.98 § 1.02 0.90 § 1.01 1.13 § 1.04 1.53 § 1.08 1.13 § 0.74* 1.43 § 0.71 1.75 § 1.13 117.23 § 141.49

Positive (N = 44) 0.72 § 0.87 0.78 § 0.85 0.66 § 0.83 1.22 § 0.91 0.65 § 0.65 1.38 § 0.74 1.90 § 0.76 113.44 § 128.81

Her2 status

Negative (N = 32) 0.77 § 0.98 0.92 § 0.97 0.72 § 0.90 1.11 § 0.98 0.86 § 0.84 1.28 § 0.70 1.72 § 0.88 94.83 § 143.75

Positive (N = 33) 0.82 § 0.85 0.71 § 0.81 0.89 § 0.93 1.47 § 0.95 0.80 § 0.68 1.52 § 0.75 1.96 § 0.89 130.38 § 118.00
123



Cancer Immunol Immunother
be considered as a biomarker that dictates higher risks for
developing brain metastasis in patients with breast cancer.
Further studies, especially prospective studies, are warranted
to establish the value of TAP1 as such a biomarker. Indeed,
our experiment using 4T1-TAP1KO cells indicates that the
knockdown of TAP1 in the primary breast cancer promotes
brain metastases. Since the extent of CD8+ T cell inWltration
in primary breast cancer was positively associated with
TAP1 expression, it is reasonable to postulate that downreg-
ulation or lack of TAP1 allows breast cancer cells to escape
from T cell-mediated immuno-surveillance, thereby promot-
ing the brain metastasis.

In addition to TAP1, lower expression of TAP2 in the
primary breast cancer was associated with higher AJCC
stage and higher nuclear grade which were poor prognostic
indicators. On the other hand, TAP2 expression was nega-
tively associated with ER and PR expressions in the pri-
mary lesions. As negative ER and PR status has been
determined to be a strong predictor of poor prognosis [49–
51], these results suggested that TAP2 and ER/PR status
might be two independent indicators of breast cancer prog-
nosis and function in independent mechanisms. Recent
studies have shown some degrees of discordance in ER and
PR status between primary and metastatic lesions [52, 53].
In fact, in brain metastases, there were no associations
between the TAP2 expression levels and ER/PR status,
likely supporting our notion that these are two independent
factors. Although previous studies by others have shown
that over-expression of HER2 in tumor cells leads to mark-
edly reduced levels of APM components [54, 55], we didn’t

Wnd either positive or inverse correlations between HER2
and APM expression levels in our cases.

Although there is a growing body of evidence demon-
strating downregulation of APM components in a variety of
cancer types [11–15], the current study now shed lights on
the potential roles of these molecules in the metastatic pro-
cesses of cancer. Extension of these studies will likely
allow us to develop novel biomarkers dictating the risks for
metastasis and delineate key underlying mechanisms upon
which we can develop strategies to prevent and/or reduce
the risk of cancer metastasis.
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